Abstract

The problem of nonisothermal desorption in a zero length column (ZLC) experiment is considered theoretically. Simple analytical expressions for the ZLC desorption curve are derived for certain limiting situations in which the governing equations reduce to a linear form. More general numerical solutions are calculated for a wide range of experimental conditions assuming both negligible mass transfer resistance and finite mass transfer resistance controlled by intraparticle diffusion. A simple criterion for negligible thermal effects is developed. It is shown that when the ZLC technique is applied to the measurement of diffusion in unaggregated zeolite crystals, as originally intended, heat effects are generally insignificant. However, when applied to the measurement of macropore diffusion in relatively large adsorbent particles heat effects can become important and may cause major modification of both the desorption rate and the shape of the desorption curve. A recent experimental ZLC study carried out with commercial adsorbent particles, under conditions of macropore diffusion control, showed an anomalous dependence of the desorption rate on both temperature and particle size. These effects can be qualitatively explained by the nonisothermal model. A more precise quantitative representation of these experiments will require a more refined model incorporating a nonlinear equilibrium isotherm as well as intraparticle diffusional resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call