Abstract

Recent discoveries of phenomena involving the interaction of heat currents and spin currents have originated a vigorous field of spintronics, known as spincaloritronics. Meanwhile, creating the spin current via the applying the temperature gradient attracts much attention among the scientists. By using spin polarization, the spintronic phenomenon able to store and process the information, so transporting information is interested. On the other hand, widely known for storage of genetic information in biology, DNA has also been recognized as a useful building material, in the field of nanotechnology. Here, we study the spin-selectivity properties of DNA chains by assuming the Peyrard-Bishop-Holstein model. The temperature gradient applied using the temperature difference between two ends of chain via the Nose-Hoover thermostat. We suppose the generation of net spin currents by heat driving. The effect of external magnetic and electrical fields simultaneously with temperature gradient is studied. The obtained results show the appropriate range of affected factors for creating the spin current. Thus, one can design a most efficient device for spin transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call