Abstract

We investigate the heat statistics in a relaxation process of quantum Brownian motion described by the Caldeira-Leggett model. By employing the normal mode transformation and the phase-space formulation approach, we can analyze the quantum heat distribution within an exactly dynamical framework beyond the traditional paradigm of Born-Markovian and weak-coupling approximations. It is revealed that the exchange fluctuation theorem for quantum heat generally breaks down in the strongly non-Markovian regime. Our results may improve the understanding about the nonequilibrium thermodynamics of open quantum systems when the usual Markovian treatment is no longer appropriate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call