Abstract

An anisotropic heat diffusion coefficient is introduced in order to study some interfacial growth phenomena. This anisotropy has been incorporated in a phase field model which has been studied numerically to reproduce some fundamental solidification situations (needle crystal growth) as well as the dynamics of a nematic–smectic- B interface. As a general result, we find that dendrites grow faster in the lower heat diffusion direction. Simulation results are compared with experiments with remarkable qualitative agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.