Abstract
Molecular dynamics simulations and nonequilibrium importance sampling are used to study the heat transport of low dimensional carbon lattices. For both carbon nanotubes and graphene sheets heat transport is found to be anomalous, violating Fourier's law of conduction with a system size dependent thermal conductivity and concomitant nonlinear temperature profiles. For carbon nanotubes, the thermal conductivity is found to increase as the square root of the length of the nanotube, while for graphene sheets the thermal conductivity is found to increase as the logarithm of the length of the sheet. The particular length dependence and nonlinear temperature profiles place carbon lattices into a universality class with nonlinear lattice models, and suggest that heat transport through carbon nano-structures is better described by a Levy walk rather than simple diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.