Abstract

We investigate the heat current and spin current through a carbon-nanotube-based molecular quantum pump. We have derived a general expression for the heat current at finite frequency so that the heat current can be calculated order by order in pumping amplitudes. We have applied our theory to a carbon-nanotube-based quantum pump. The heat current generated during the parametric pumping has been calculated at small frequencies for finite pumping amplitude. At finite frequencies, we have calculated the heat current to the second order in pumping amplitudes. The photon assisted process is clearly observed in the heat current. In the presence of magnetic field, the carbon-nanotube-based quantum pump can function as a spin pump, a molecular device by which a dc pure spin current without accompanying charge current is generated at zero bias voltage via a cyclic deformation of two device parameters. The pure spin current is achieved when the Fermi energy is near the resonant level of the quantum pump. We find that the pure spin current is sensitive to system parameters such as pumping amplitude, external magnetic field, and gate voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.