Abstract

This study was designed to determine the effects of the heat curing time on a urethane tetramethacrylate (UTMA)-based hybrid resin and specifically on the degree of conversion (DC) and cytotoxicity. The materials used in this study were Estenia, a new-generation hybrid resin, and an experimental fiber reinforcement, Br-100. The DC values of the hybrid resin samples were measured using a Fourier transform infrared (FTIR) spectrophotometer after 180 s of light curing followed by heat curing (0, 15, 30, and 60 min). A method comparing intensities of C=C and N-H vibrations of the sample was used to calculate the final DC values. FTIR spectra were measured both inside and on the surface of the sample. The calculated DC values increased by increasing the heat curing times. After light curing only and after 15-min heat curing, the DC values inside the samples were smaller than the corresponding DC values at the surfaces of the samples. After 60 min of heat curing, the samples achieved homogeneous polymerization (DC% = 65). The cytotoxicity of the material was studied from the glass fiber-reinforced hybrid resin samples, which were first light cured and then heat cured (15, 30, and 60 min). Cytotoxicity was tested using both direct contact and extract methods. For the extract tests, the test specimens were incubated in a cell culture media at 37 degrees , 54 degrees , or 72 degrees C for 24 h. The heat curing times used had no effect on cytotoxicity. The incubation temperature, however, did have a significant effect. The extract obtained from 72 degrees C incubation showed a cytotoxic effect whereas the others did not. The direct contact test did not show cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.