Abstract

We study the small-time asymptotics of the heat content of smooth non-characteristic domains of a general rank-varying sub-Riemannian structure, equipped with an arbitrary smooth measure. By adapting to the sub-Riemannian case a technique due to Savo, we establish the existence of the full asymptotic series:QΩ(t)=∑k=0∞aktk/2,as t→0. We compute explicitly the coefficients up to order k=5, in terms of sub-Riemannian invariants of the domain. Furthermore, we prove that every coefficient can be obtained as the limit of the corresponding one for a suitable Riemannian extension.As a particular case we recover, using non-probabilistic techniques, the order 2 formula recently obtained by Tyson and Wang in the Heisenberg group [48]. A consequence of our fifth-order analysis is the evidence for new phenomena in presence of characteristic points. In particular, we prove that the higher order coefficients in the asymptotics can blow-up in their presence. A key tool for this last result is an exact formula for the distance from a specific surface with an isolated characteristic point in the Heisenberg group, which is of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.