Abstract

This paper deals with steady-state heat conduction in integrated circuits due to surface heating. Temperature-dependent and orthotropic thermal conductivities are assumed, and an exact formula is obtained for the temperature field in the integrated circuit due to arbitrary surface flux loading. These general results are then specialized to specific forms of surface flux representative of multifingered FETs of arbitrary gate length, gatewidth, and pitch. Numerical results are presented for a representative transistor on a gallium-arsenide substrate and comparisons are made, where possible, to existing approximate solutions, as well as to finite-element results. The examples are chosen to highlight the effects of orthotropy and temperature dependence of thermal conductivity on the junction temperature of devices on integrated circuits

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.