Abstract

A new solution to the heat equation in composite media is derived using a variational principle developed by Ben-Amoz. The model microstructure is fed into the equations via a term for the polar moment of the inclusions in a representative volume. The general solution is presented as an integral in terms of sources and a Green function. The problem of uniqueness is studied to determine appropriate boundary conditions. The solution reduces to the solution of the normal heat equation in the limit of homogeneous media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.