Abstract

Heat capacities of the spin crossover complex [Fe(2-pic)3]Cl(2)*MeOH (2-pic: 2-picolylamine or 2-aminomethylpyridine) were measured with an adiabatic calorimeter between 12 and 355 K. A broad heat capacity peak, starting from approximately 80 K, culminating at approximately 150 K, and terminating at approximately 250 K, was observed. The temperature range of the heat capacity anomaly corresponds to that where the low-spin and high-spin states coexist in the 57Fe Mössbauer spectra. The enthalpy and entropy changes arising from the heat capacity anomaly were 8.88 kJ x mol(-1) and 59.5 J x K(-1) x mol(-1), respectively. The entropy gain was much larger than the contribution expected from the change in the spin-manifold R ln 5 (13.4 J x K(-1) x mol(-1)) where R is the gas constant. The remaining entropy gain is attributed to the contribution from the change in the internal vibrations. On the basis of the domain model, the number of molecules per domain was found to be very close to unity, implying a very weak cooperativity in the spin crossover occurring in the solid state of this complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.