Abstract

Heat capacities and electrical conductivities of (U0.85Mg0.15)O2−x (x=0 and 0.1) were measured simultaneously by means of a direct heating pulse calorimeter (DHPC) in the temperature range from 300 to 1500 K. Anomalous increases in the heat capacity curves of (U0.85Mg0.15)O2−x) (x=0 and 0.1) were observed above about 800 and 1150 K, respectively. The values for the enthalpy of oxygen Frenkel defect formation were calculated from the excess heat capacity and were found to be similar to those for UO2 doped with rare earth elements. On the other hand, no anomaly was seen in the electrical conductivity curve around the onset temperature of the anomalous increase in the heat capacity. It was, therefore, concluded that the excess heat capacity originates from the predominant contribution of the formation of Frenkel pair-like defects of oxygen. An extended X-ray absorption fine structure (EXAFS) experiment shows a different environment of oxygen around uranium and magnesium, and this should be a cause of the onset temperature difference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.