Abstract

Nanoconfinement is known to affect the property of fluids. The changes in some thermo-mechanical properties of water confined in C-S-H are still to be quantified. Here, we perform molecular simulations to obtain the adsorption isotherms in C-S-H as a function of the pore size (spanning interlayer up to large gel pores). Then, fluctuations formula in the grand canonical ensemble are used to compute the isothermal compressibility (and its reciprocal, the bulk modulus), the heat capacity, the coefficient of thermal expansion and thermal pressure, and the isosteric heat of adsorption of confined water as a function of the (nano)pore size. All these properties exhibit a pore size dependence, retrieving the bulk values for basal spacing above 2 nm. To understand why property changes with confinement, we compute structural descriptors including the radial distribution function, apparent density, hydrogen bonds counting, and excess pair entropy of water as a function of the confinement. These descriptors reveal significant structural changes in confined water. The heat capacity shows a good linear correlation with the apparent density, entropy, and hydrogen bond number. The values of water property as a function of the basal spacing are a valuable input for multiscale modeling of cement-based materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.