Abstract

We show how to extend the concept of heat capacity to nonequilibrium systems. The main idea is to consider the excess heat released by an already dissipative system when slowly changing the environment temperature. We take the framework of Markov jump processes to embed the specific physics of small driven systems and we demonstrate that heat capacities can be consistently defined in the quasistatic limit. Away from thermal equilibrium, an additional term appears to the usual energy-temperature response at constant volume, explicitly in terms of the excess work. In linear order around an equilibrium dynamics that extra term is an energy-driving response and it is entirely determined from local detailed balance. Examples illustrate how the steady heat capacity can become negative when far from equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.