Abstract

The heat capacities of 2-methylbiphenyl and 3,3′-dimethylbiphenyl are measured by means of low-temperature adiabatic calorimetry in the temperature range of 6 to 372 K. The thermodynamic characteristics of fusion and the glass transition of the investigated compounds are determined. The saturation vapor pressure and enthalpy of vaporization of 3,3′-dimethylbiphenyl are determined according to the dynamic method based on the transfer of a substance vapor in a helium flow. The absolute entropies and changes in Gibbs energies of biphenyl derivatives are calculated from the data obtained in the condensed and ideal gas states. The contribution of the Cb-(Cb) group is determined using the Benson additive method for calculating the absolute entropies of biphenyl derivatives in the liquid state (where Cb is the carbon atom in a benzene ring).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call