Abstract

The possible structural changes in the major isotype of parvalbumin from the toad (Bufo bufo japonicus) skeletal muscle caused by Ca2+ and Mg2+ binding have been analyzed by microcalorimetric titrations. Parvalbumin was titrated with Ca2+ in both the absence and presence of Mg2+ and with Mg2+ in the absence of Ca2+, at pH 7.0, and at 5 degrees, 15 degrees, and 25 degrees C. The two sites in a molecule were equivalent on Mg2(+)-Ca2+ exchange, but distinguishable on Ca2+ and Mg2+ binding. The reactions of parvalbumin with Ca2+ are exothermic at every temperature in both the absence and presence of Mg2+, but those with Mg2+ are always endothermic except for the binding to site 1 at 25 degrees C. The magnitudes of the hydrophobic and internal vibrational contributions to the heat capacity and entropy changes of parvalbumin on Ca2+ and Mg2+ binding and Mg2(+)-Ca2+ exchange have been estimated by the empirical method of Sturtevant [Sturtevant, J. M. (1977) Proc. Natl Acad. Sci. USA 74, 2236-2240]. Although no major conformational changes were noted between Ca2(+)- and Mg2(+)-bound forms of toad parvalbumin, the conformational difference was larger in Ca2+ (or Mg2+) binding to site 1 than site 2. This may indicate that the metal-free form is much less stable than any form with Ca2+ (or Mg2+) bound at one site at least. On Mg2(+)-Ca2+ exchange, the vibrational as well as hydrophobic entropy is only slightly increased in a parallel manner. In contrast, on Ca2+ (or Mg2+) binding, the hydrophobic entropy increases but the vibrational entropy decreases; the former indicates the sequestering of nonpolar groups from the surface to the interior of a molecule, and the latter suggests that the overall structures are tightened on Ca2+ (or Mg2+) binding but loosened on Mg2(+)-Ca2+ exchange. Despite the clear distinctions in the thermodynamic features, the conformational changes of toad parvalbumin are essentially the same as those of the two isotypes of bullfrog parvalbumins on Ca2+ binding and Mg2(+)-Ca2+ exchange.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call