Abstract
Two metal–organic frameworks (MOFs) of M(HBTC)(4,4′-bipy)·3DMF [M = Ni (for 1) and Co (for 2); H3BTC = 1,3,5-benzenetricarboxylic acid (1,3,5-BTC); 4,4′-bipy = 4,4′-bipyridine; DMF = N,N′-dimethylformamide] were synthesized by a one-pot solution reaction and a solvothermal method, respectively, and characterized by powder X-ray diffraction and FT-IR spectra. The low-temperature molar heat capacities of M(HBTC)(4,4′-bipy)·3DMF were measured by temperature-modulated differential scanning calorimetry (TMDSC) for the first time. The thermodynamic parameters such as entropy and enthalpy relative to reference temperature 298.15 K were derived based on the above molar heat capacity data. Moreover, the thermal stability and the decomposition mechanism of M(HBTC)(4,4′-bipy)·3DMF were investigated by thermogravimetry analysis (TGA). The experimental results through TGA measurement demonstrate that both of the two compounds have a three-stage mass loss in air flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.