Abstract

Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the south-central equatorial Pacific, with a focus on the double-ITCZ bias, and examined the causes for the amplitude biases by using heat budget analysis. The results showed that, in the research region, most of the models simulate SSTs that are higher than or similar to observed. The simulated seasonal phase is close to that observed, but the amplitudes of more than half of the model results are larger than or equal to observations. Heat budget analysis demonstrated that strong shortwave radiation in individual atmospheric models is the main factor that leads to high SST values and that weak southward cold advection is an important mechanism for maintaining a high SST. For seasonal circulation, large surface shortwave radiation amplitudes cause large SST amplitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call