Abstract

In this paper, we present a study on two and a half dimensional (2.5D) perpendicular magnetic recording (PMR) media consisting of dual hard magnetic recording layers (RL) with 1st or top RL1 used for conventional data storage and 2nd or bottom RL2 used for dedicated servo with lower linear densities or DC servo patterns with focus on the writability issue of the bottom servo layer (RL2). We demonstrate experimentally the feasibility to magnetically erase, write, and re-write RL2 by laser assist on a home built heat-assisted-magnetic-recording writing test system. Experimental data (by magnetic force microscopy measurements) show that the signal amplitudes of the pre-recorded magnetic patterns for both RL1 and RL2 decrease at almost the same rate with thermal erasure using scanning laser power (Pw) from 13 mW to 23 mW, clearly indicating equally effective laser heating and close temperature rise for RL1 and RL2 for far field laser heating with laser pulse duration in sub-μs and μs range. This is further verified by theoretical simulations of the thermal distribution and the temperature rise depth profile in dual layer media by laser heating. Simulations indicate very little temperature difference of less than 6 K (∼1% of maximum temperature rise) between RL1 and RL2 because the main mechanism of temperature rises in RL1 and RL2 is due to the effective thermal conduction from the top layers to lower layers. These experimental and theoretical study results could provide useful understanding and insights into servo writing methods of 2.5D PMR media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call