Abstract

The formalism of Kundu et al. [J. Stat. Mech. P03007 (2011)], for computing the large deviations of heat flow in harmonic systems, is applied to the case of single Brownian particle in a harmonic trap and coupled to two heat baths at different temperatures. The large-τ form of the moment generating function <e(-λQ)>≈g(λ)exp[τμ(λ)], of the total heat flow Q from one of the baths to the particle in a given time interval τ, is studied and exact explicit expressions are obtained for both μ(λ) and g(λ). For a special case of the single particle problem that corresponds to the work done by an external stochastic force on a harmonic oscillator coupled to a thermal bath, the large-τ form of the moment generating function is analyzed to obtain the exact large deviation function as well as the complete asymptotic forms of the probability density function of the work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.