Abstract

The process of the respiratory air conditioning as a process of heat and mass exchange at the interface inspired air-airways surface was studied. Using a model of airways (Olson et al., 1970) where the segments of the respiratory tract are like cylinders with a fixed length and diameter, the corresponding heat transfer equations, in the paper are founded basic rate exchange parameters—convective heat transfer coefficient hc(W m−2°C−1) and evaporative heat transfer coefficient he(W m−2hPa−1). The rate transfer parameters assumed as sources with known heat power are connected to airflow rate in different airways segments. Relationships expressing warming rate of inspired air due to convection, warming rate of inspired air due to evaporation, water diffused in the inspired air from the airways wall, i.e. a system of air conditioning parameters, was composed. The altitude dynamics of the relations is studied. Every rate conditioning parameter is an increasing function of altitude. The process of diffusion in the peripheral bronchial generations as a basic transfer process is analysed. The following phenomenon is in effect: the diffusion coefficient increases with altitude and causes a compensation of simultaneous decreasing of O2and CO2densities in atmospheric air. Due to this compensation, the diffusion in the peripheral generations with altitude is approximately constant. The elements of the human anatomy optimality as well as the established dynamics are discussed and assumed. The square form of the airways after the trachea expressed in terms of transfer supposes (in view of maximum contact surface), that a maximum heat and water exchange is achieved, i.e. high degree of air condition at fixed environmental parameters and respiration regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call