Abstract

The paper is concerned with heat and sweat transport in porous textile media with a non-local thermal radiation and phase change. The model, based on a combination of these classical heat transfer mechanisms (convection, conduction and radiation), is governed by a nonlinear, degenerate and strongly coupled parabolic system. The thermal radiative flow is described by a radiation transport equation and characterized by the thermal absorptivity and emissivity of fibre. A conservative boundary condition is introduced to describe the radiative heat flux interacting with environment. With the conservative boundary condition, we prove the global existence of positive/non-negative weak solutions of a nonlinear parabolic system. A typical clothing assembly with a polyester batting material sandwiched in two laminated covers is investigated numerically. Numerical results show that the contribution of radiative heat transfer is comparable with that of conduction/convection in the sweating system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.