Abstract

Natural food colorants are on demand due to food safety concerns related with some synthetic counterparts. Health-friendly alternatives can be available from plant sources, which include curcumin extracted from Curcuma longa L. However, its industrial use is difficult to achieve due to the low water affinity, pH and thermal instability, which is particularly challenging, e.g. for baked foods. In this work, the solid dispersion technique followed by spray-drying, an emergent approach in the context of colorants, was applied to curcumin using k-carrageenan, poly(vinyl alcohol) and polyvinylpyrrolidone, as the encapsulant materials. An orthogonal central composite design with dummy-variables was applied, and principal component analysis (PCA) and hierarchical cluster analysis (HCA) carried out to identify the experimental conditions leading to the most effective formulations. In general, particles with a wide range of pH and heat stability have been produced depending on the chosen encapsulant material, used formulation (curcumin, surfactant and polymer contents), and synthesis conditions (pH). Moreover, the used mathematical approach showed to be a valuable tool to support the development of tailor-made formulations directed to specific applications where pH and temperature are relevant processing parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call