Abstract

Prefabricated, lightweight building elements are widely used in the building construction sector. Such elements consist of fibrous thermal insulation encapsulated between two metal sheets. Under various circumstances, moisture can appear in the insulation matrix. Since the temperature of the boundary metal sheets changes dynamically with meteorological conditions, heat and mass transfer between boundaries appear in this case. This paper presents a transient model of the heat and mass transfer, including the sorption and condensation processes. A numerical model considers the dynamical changing of the boundary temperatures. A parametric study considering different amplitudes of temperature change, different moisture masses and different thicknesses of the insulation matrix was made. It was found that a relatively small mass of water in the insulation matrix can result in a significantly increased average heat flux during a periodic cycle. The numerical code was verified with experiments, which showed good agreement with the numerics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.