Abstract

Abstract Surface-level meteorological observations and upper-air soundings in the Weddell Sea provide the first in situ look at conditions over the deep Antarctic ice pack in the spring. The surface‐level temperature and humidity were relatively high, and both were positively correlated with the northerly component of the 850 mb wind vector as far as 600 km from the ice edge. Since even at its maximum extent at least 60% of the Antarctic ice pack is within 600 km of the open ocean, long‐range atmospheric transport of heat and moisture from the ocean must play a key part in Antarctic sea ice heat and mass budgets. From one case study, the magnitude of the ocean's role is inferred: at this time of year the total turbulent surface heat loss can be 100 W m−2 greater under southerly winds than under northerly ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.