Abstract

The purpose of the present study was to develop a model to describe the heat and mass transfer during the drying of carrot cubes in a spout-fluidized-bed drier. The model took into account the non-homogeneous shrinkage of the material. The Arbitrary Lagrange–Eulerian (ALE) formulation was applied to enter the problem with moving boundaries. Three phases of drying were distinguished according to the behavior of changes in percent local error of estimation: an initial phase of warming up the material – characterized by a low level of error of moisture content prediction, a second phase – characterized by an increase in the error of moisture content prediction and a phase of decreasing error. A simple test of the sensitivity of the model to the changes in heat transfer coefficient was performed in order to improve the ability of the model to predict the changes in moisture content and temperature of dried carrots. The predicted changes in both the moisture content and the temperature of carrot cubes during drying in a spout-fluidized-bed drier indicate that the model can be successfully applied to describe moisture content, temperature and deformation of dried particles in cases when the very high accuracy of moisture content and temperature prediction is not a crucial element of investigation of the drying process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.