Abstract

The results of a numerical solution to the problem of heat and mass transfer at the ignition of a liquid flammable substance by a single particle heated to a high temperature located on its surface are presented. The problem is solved within the framework of a gas phase model of ignition. A mathematical model is formulated. It describes the following processes in a two-dimensional statement: the heat conduction and evaporation of a flammable liquid and the diffusion and convection of the combustible vapors in the oxidizer medium in the system “particle heated to a high temperature-liquid flammable substance-air.” The numerical investigations established the relation between the ignition delay time, the particle temperature and sizes, and the particle minimum temperature and sizes at which ignition of a combustible liquid is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.