Abstract

The heat and mass transfer of the electroosmotic flow in microchannel transporting viscoelastic nanofluid is investigated considering Brownian motion of nanoparticles and slip boundary conditions. The simplified Phan-Thien-Tanner model is employed to describe the rheological behavior of fluid and the nonlinear Navier model with non-zero slip critical shear stress is considered at walls. The governing nonlinear momentum, mass, and heat transfer equations are solved using the Homotopy Perturbation Method. The study reveals that increasing the fluid elasticity, nanoparticle concentration, and size significantly enhances the flow rate, heat and mass transfer. Additionally, elasticity and Reynolds number decrease the friction factor. Reducing the double-layer thickness and increasing the Reynolds number lead to higher flow rates and fluid velocities. Notably, the findings emphasize the critical role of the slip conditions on the Sherwood and Nusselt numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.