Abstract

This particular study focuses on investigating the heat and mass transport characteristics of a liquid flow across the conical gap (CG) of a cone-disk apparatus (CDA). The cone and disk may be taken as stationary or rotating at varying angular velocities. Consideration is given to heat transport affected by solar radiation. The Rosseland approximation is used for heat radiation calculations in the current work. To observe the mass deposition variation on the surface, the effect of thermophoresis is taken into account. Appropriate similarity transformations are used to convert the three-dimensional boundary-layer governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs) system. Particularly for the flow, thermal and concentration profiles, plots are provided and examined. Results reveal that the flow field upsurges significantly with upward values of Reynolds numbers for both cone and disk rotations. The increase in values of the radiation parameter improves heat transport. Moreover, it is detected that the stationary cone and rotating disk model shows improved heat transport for an increase in the values of the radiation parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call