Abstract

In this paper, we investigate the effects of heat and mass transfer on peristaltic motion of magnetohydrodynamic (MHD) viscous fluid in a symmetric channel in the presence of Hall and ion-slip currents, viscous and Joule dissipations, and variable temperature-dependent viscosity. The governing field equations are solved using series solution under the normal assumptions of long wavelength and low Reynolds number. The pumping characteristics are obtained using numerical integration. The results are critically analyzed for the physical parameters that characterize the peristaltic motion. These parameters include amplitude ratio, volume flow rate, viscosity parameter, Brinkman number, heat generation parameter, magnetic parameter, Hall parameter and ion-slip parameter. The results are presented graphically to understand the behavior of the field quantities and the physics of peristaltic transport of physiological and industrial fluids. Special emphasis has been given to analyze the effects of heat transfer with viscous and Joule dissipations — essentially the new features added in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call