Abstract

During the steam condensation, the presence of non-condensable gases is an important issue affecting the efficiency of the whole thermodynamic process. For this reason, many researchers investigated it by theoretical or experimental methods. A heat and mass transfer analogy model on steam condensation in presence of air over the vertical external surface based on the diffusion layer model is modified in the present paper. Based on previous authors’ experience, the suction effect at the gas-liquid interface and other analogy drawbacks are identified and overcome by supplementing it with more detailed analysis as well as targeted experiments. The experimental data obtained for condensation, outside vertical tube with an external diameter of 38 mm, of air/steam and helium/air/steam mixture, have been used to verify the present heat and mass transfer analogy formulation. By comparing against different available experimental data and previous formulations, the heat and mass transfer analogy formulation is demonstrated to be a accurate enough theoretical approximation. The deviation between predicted values of the new model and experiment results of this paper is less than 15% which has relative higher precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.