Abstract

Binary solvent-based fabrication permits the conductive organohydrogel to function well at low-temperature environments. However, the deep cryogenic and high temperatures are still threatening the performance of conductive organohydrogels in the application of stretchable electronics, biosensors, and intelligent coatings. Here, a radically new method is developed to introduce propylene and carbonate cellulose nanofibrils into freeze tolerance polymer matrix, and fabricate an antifreezing/antiheating organohydrogel integrated a high mechanical strength (1.6 MPa) and high level of ionic conductivity (4.2 S cm−1) over a wide temperature range (−40 to 100 °C). In this designed system, the propylene carbonate with low freezing point and high boiling point was shown to enhance antifreezing (−40 °C) and antiheating (100 °C) performance of organohydrogel. Furthermore, negative charge-rich cellulose nanofibrils (CNFs) were served as an ion transport channel and nanoreinforcements to boost the conductive and mechanical properties of the organohydrogel. In particular, Molecular Dynamics (MD) simulations reveal that propylene carbonate with high dielectric constant is capable of generating ion migration-facilitated effects, enabling the high ionic conductivity of organohydrogel. Tapping into these attributes, potential applications in mechanoresponsive smart coating have been demonstrated utilizing the appealing organohydrogel as a paint, rendering unprecedented protection and monitoring performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call