Abstract

Free-stream flow and forced convection heat transfer across a rotating cylinder, dissipating uniform heat flux, are investigated numerically for Reynolds numbers of 20–160 and a Prandtl number of 0.7. The non-dimensional rotational velocity ( α) is varied from 0 to 6. Finite volume based transient heatline formulation is proposed. For Re = 100, the reasons for the onset/suppression of vortex shedding at a critical rotational velocity is investigated using vorticity dynamics. At higher rotational velocity, the Nusselt number is almost independent of Reynolds number and thermal boundary conditions. Finally, a heat transfer correlation is proposed in the 2D laminar flow regime. Cylinder rotation is an efficient Nusselt number reduction or cylinder-surface temperature enhancement technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call