Abstract

Thermoelectric generator (TEG) has been proved as a promising technology for directly converting heat into electricity based on Seebeck effect. On the contrary, this electricity can trigger a solid-state cooling based on conventional Peltier effect. However, these two effects induce a coupling between heat and electric flux, especially for the quantitative relationship still remaining a mystery. Here, we show experimental evidence and theoretical calculation for the coupling by monitoring transient response of fluid temperature and output power. The experimental maximum heat flow in open circuit is 1162 W at cold fluid flow rate V̇c = 0.3 m3/h and fluid temperature difference ΔTf = 70 °C, enhanced by 13% owing to heat compensation from intrinsic coupling in closed-loop circuit. Meanwhile, the measured maximum output power of TEG is 18.2 W, and subsequently decreases to 15.4 W due to the objective existence of coupling. This double-edged sword in coupling vigorously inspires the potential applications in heat-dissipation situation such as spacecraft, electronic components, photovoltaic, refrigerator and etc. Present findings open a novel avenue for manipulating heat-electricity conversion in practical engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call