Abstract

The influence of heat adaptation (growth at 42 and 45 degrees C) on changes in membrane lipid composition and verotoxin concentration of Escherichia coli O157:H7 (ATCC 43895), an rpoS mutant of ATCC 43895 (FRIK 816-3), a verotoxin mutant E. coli O157:H7 (B6-914), and nonpathogenic E. coli (ATCC 25922) was investigated. D values (57 degrees C) of heat-adapted cells were up to 3.9 min longer than those of control cells for all four strains. Heat adaptation increased the amounts of palmitic acid (16:0) and cis-vaccenic acid (18:1omega7c) in membrane lipids of ATCC 43895 and the rpoS mutant, whereas there was a reduction and no change in the amount of cis-vaccenic acid in nonpathogenic and verotoxin mutant E. coli, respectively. The ratio of palmitic to cis-vaccenic acids decreased in ATCC 43895 and in the rpoS mutant, whereas the ratio increased in nonpathogenic E. coli and was not different in the verotoxin mutant with elevated growth temperature. Total verotoxin concentration decreased due to a reduction in intracellular verotoxin amount in heat-adapted ATCC 43895 and rpoS mutant strains. However, extracellular verotoxin concentration increased in heat-adapted cells. The rpoS gene did not influence membrane lipid composition changes although it did affect heat resistance. Results suggest that increased membrane fluidity may have caused increased verotoxin secretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call