Abstract

Thermal Energy Storage (TES) system has emerged as a promising solution of energy demand and supply management, which stores excess thermal energy and releases it when energy demand is high, making it an efficient and cost-effective energy storage solution when combined with renewable energy sources, such as solar and wind power. This study aimed to evaluate the thermal performance of TES units using Computational Fluid Dynamics (CFD) simulations in the ANSYS CFX software package. After comparing the heat storage capacity of conventional Phase Change Material (PCM) and iron oxide/paraffin wax composite ($2 \%$) using industrial residual water, temperature distribution plots and heat flux data were generated in simulations for both cases. Addition of iron oxide nanoparticles significantly improved the heat absorption performance of TES units. Both materials initially exhibited a higher heat absorption rate, which gradually decreased over time. CFD data analysis revealed that iron oxide/paraffin wax material enhanced heat absorption performance by up to $1.3 \%$, which demonstrated the potential of iron oxide nanoparticles in improving the efficiency of TES system and highlighted the advantages of TES system combined with renewable energy sources. By improving heat absorption properties, the incorporation of iron oxide nanoparticles had the potential to increase the lifespan of TES units and significantly reduced maintenance and replacement expenses. This breakthrough, along with the cost savings and energy efficiency offered by TES technology, may encourage its widespread application, thus reducing reliance on fossil fuels and promoting sustainable energy practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call