Abstract

We present a scalable end-to-end system for vision-based monitoring of natural environments, and illustrate its use for the analysis of avian nesting cycles. Our system enables automated analysis of thousands of images, where manual processing would be infeasible. We automate the analysis of raw imaging data using statistics that are tailored to the task of interest. These “features” are a representation to be fed to classifiers that exploit spatial and temporal consistencies. Our testbed can detect the presence or absence of a bird with an accuracy of 82%, count eggs with an accuracy of 84%, and detect the inception of the nesting stage within a day. Our results demonstrate the challenges and potential benefits of using imagers as biological sensors. An exploration of system performance under varying image resolution and frame rate suggest that an in situ adaptive vision system is technically feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.