Abstract

Abstract A method for the automatic classification of electrocardiograms (ECG) based on the combination of multiple Support Vector Machines (SVMs) is presented in this work. The method relies on the time intervals between consequent beats and their morphology for the ECG characterisation. Different descriptors based on wavelets, local binary patterns (LBP), higher order statistics (HOS) and several amplitude values were employed. Instead of concatenating all these features to feed a single SVM model, we propose to train specific SVM models for each type of feature. In order to obtain the final prediction, the decisions of the different models are combined with the product, sum, and majority rules. The designed methodology approaches are tested on the public MIT-BIH arrhythmia database, classifying four kinds of abnormal and normal beats. Our approach based on an ensemble of SVMs offered a satisfactory performance, improving the results when compared to a single SVM model using the same features. Additionally, our approach also showed better results in comparison with previous machine learning approaches of the state-of-the-art.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.