Abstract

Tissue-engineered heart valves have been proposed by physicians and scientists alike to be the ultimate solution for treating valvular heart disease. Rather than replacing a diseased or defective native valve with a mechanical or animal tissue-derived artificial valve, a tissue-engineered valve would be a living organ, able to respond to growth and physiological forces in the same way that the native aortic valve does. Two main approaches have been attempted over the past 10 to 15 years: regeneration and repopulation. Regeneration involves the implantation of a resorbable matrix that is expected to remodel in vivo and yield a functional valve composed of the cells and connective tissue proteins of the patient. Repopulation involves implanting a whole porcine aortic valve that has been previously cleaned of all pig cells, leaving an intact, mechanically sound connective tissue matrix. The cells of the patients are expected to repopulate and revitalize the acellular matrix, creating living tissue that already has the complex microstructure necessary for proper function and durability. Regrettably, neither of the 2 approaches has fared well in animal experiments, and the only clinical experience with tissue-engineered valves resulted in a number of early failures and patient death. This article reviews the technological details of the 2 main approaches, their rationale, their strengths and weaknesses, and the likely mechanisms for their failure. Alternative approaches to valvular tissue engineering, as well as the role of industry in shaping this field in the future, are also reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.