Abstract

Heartbeat rhythms are related to a complex dynamical system based on electrical activity of the cardiac cells usually measured by the electrocardiogram (ECG). This paper presents a mathematical model to describe the electrical activity of the heart that consists of three nonlinear oscillators coupled by delayed Duffing-type connections. Coupling alterations and external stimuli are responsible for different cardiac rhythms. The proposed model is employed to build synthetic ECGs representing a variety of responses including normal and pathological rhythms: ventricular flutter, torsade de pointes, atrial flutter, atrial fibrillation, ventricular fibrillation, polymorphic ventricular tachycardia and supraventricular extrasystole. Moreover, the sinoatrial rhythm variations are described by time-dependent frequency, representing transient disturbances. This kind of situation can represent transitions between different pathological behaviors or between normal and pathological physiologies. In this regard, a nonlinear dynamics perspective is employed to describe cardiac rhythms, being able to represent either normal or pathological behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call