Abstract
Drug monitoring in psychiatry usually serves psychoactive drug plasma concentration measurement. Anticholinergic properties offer a faster approach to monitoring pharmacodynamic intraindividual effects of the drug by measuring their effects on heart rate variability (HRV), which is sympathetically and parasympathetically controlled via cholinergic synapses. The plasma concentrations of the atypical antipsychotics clozapine and olanzapine correlated with parameters of HRV in 59 patients suffering from schizophrenia or schizoaffective disorder. HRV during 4 minutes at rest was extracted from the ECG trace of a routine digital EEG registration in addition to blood sampling for plasma concentration measurement (HPLC method). We calculated sympathetically and parasympathetically controlled heart frequency bands (low, medium and high frequency) and other HRV parameters, coefficient of variation (CV), and root mean square of successive differences (RMSSD). All HRV parameters were significantly more impaired in clozapine patients (n = 33, mean clozapine plasma concentration 331 +/- 294 ng/ml) than in olanzapine patients (n = 26, mean olanzapine plasma concentration 42 +/- 32 ng/ml) and demonstrated 1.7 - 4.8 times the cardiac anticholinergic properties of clozapine in vivo. 14 out of 14 patients with a CV beyond 3.2 % had clozapine plasma concentrations below the proposed optimal therapeutic concentration of 350 ng/ml. All HRV parameters were inversely and significantly correlated with the clozapine plasma concentrations (such as lgCV: r = - 0.73, p < 0.001) and, to a lesser extent, with the olanzapine plasma concentrations (lgCV r = - 0.44, p < 0.05). These results underline the potential clinical value of HRV parameter extraction from routine ECGs in predicting plasma concentrations and objective individual neurocardiac effects of drugs with anticholinergic properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.