Abstract

Persons with Huntington's disease (HD) have a high incidence of falls. Autonomic nervous system dysfunction has been reported even in early stages of this disease. To date, there has been no analysis of the relationship between heart rate variability (HRV) and falls in this patient population. The aim of the study reported here was to evaluate the relationship between HRV and falls in persons with HD. Huntington's disease patients enrolled in a prospective study on fear of falling and falls were assessed using short-term HRV analyses and blood pressure measures in both the resting and standing states. Time-frequency domains and nonlinear parameters were calculated. Data on falls, the risk of falling (RoF) and disease-specific scales were collected at baseline and at the end of the 6-month follow-up. Of the 24 HD patients who were invited to participate in the study, 20 completed the baseline analysis and 18 completed the 6-month follow-up. At baseline, seven (35%) HD patients reported at least one fall (single fallers) and 13 (65%) reported ≥ 2 falls (recurrent fallers) in the previous 12 months. At baseline, recurrent fallers had lower RMSSD (root mean square of successive RR interval differences) in the resting state (RMSSD-resting), higher LF/HF (low/high frequency) ratio in both states and higher DFA-α1 parameter (detrended fluctuation analyses over the short term) in both states. This association was similar at the 6-month follow-up for recurrent fallers, who showed lower RMSSD-resting and higher LF/HF ratio in the standing state (LF/HF-standing) than single fallers. Significant correlations were found between the number of falls, RMSSD-resting and LF/HF-standing. No differences were found between recurrent and single fallers for any blood pressure measures. The observed HRV pattern is consistent with a higher sympathetic prevalence associated with a higher RoF. Reduced parasympathetic HRV values in this patient population predict being a recurrent faller at 6 months of follow-up, independently of orthostatic phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call