Abstract

The causal relationship between heart rate variability and cardiovascular diseases and the associated events is still unclear, and the conclusions of current studies are inconsistent. We aimed to explore the relationship between heart rate variability and cardiovascular diseases and the associated events with the Mendelian randomization study. We selected normal-to-normal inter-beat intervals (SDNN), root mean square of the successive differences of inter-beat intervals (RMSSD) and peak-valley respiratory sinus arrhythmia or high-frequency power (pvRSA/HF) as the three sets of instrumental variables for heart rate variability. The outcome for cardiovascular diseases included essential hypertension, heart failure, angina pectoris, myocardial infarction, nonischemic cardiomyopathy and arrhythmia. Cardiac arrest, cardiac death and major coronary heart disease event were defined as the related events of cardiovascular diseases. The data for exposures and outcomes were derived from publicly available genome-wide association studies. Inverse variance weighted was used for the main causal estimation. Analyses of heterogeneity and pleiotropy were conducted using the Cochran Q test of Inverse variance weighted and MR-Egger, leave-one-out analysis, and MR-Pleiotropy Residual Sum and Outlier methods. The Inverse variance weighted method indicated that genetically predicted pvRSA/HF was associated with the increased risk of cardiac arrest (odds ratio 2.02, 95% confidence interval 1.25-3.28, p = .004). The results were free of heterogeneity and pleiotropy. There were no outliers and the leave-one-out analysis proved that the results were reliable. This study provides genetic evidence that pvRSA/HF is causally related to cardiac arrest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call