Abstract

We have previously reported that oscillations at 0.05 Hz can be generated by a simple computer model incorporating a negative-feedback reflex mechanism and an effector mechanism with a time delay. Computer simulations by inhibiting the vagal effector mechanism and activating the adrenergic effector mechanism elicited low-frequency oscillations at a frequency of 0.05 Hz in heart rate. We have observed that the cardiovascular system of the conscious dog, when stressed by the loss of blood, generates oscillations in arterial pressure and heart rate at a frequency of 0.05 Hz. We investigated in six conscious dogs the role of the sympathetic and parasympathetic nervous systems in generating these heart rate oscillations. During baseline conditions, the predominant peak in the arterial pressure and heart rate power spectra was located at the respiratory frequency, while the low-frequency oscillations were small. After a 30-ml/kg hemorrhage or after an 8-, 15-, or 30-ml/kg hemorrhage with glycopyrrolate, a muscarinic-blocking agent, low-frequency oscillations at a frequency of 0.05 Hz predominated, while the respiratory frequency oscillations were negligible. Since respiratory frequency oscillations have been reported to reflect vagal activity, and since the low-frequency oscillations were present after vagal blockade, these hemorrhage-induced low-frequency oscillations in heart rate may be primarily mediated by the cardiac sympathetic nerves. Also cross-correlation analysis between arterial pressure and heart rate showed that a change in arterial pressure caused an opposite change in heart rate with a delay of 2-5 s. We conclude that hemorrhage-induced oscillations in heart rate at 0.05 Hz represent the arterial baroreceptor-beta-sympathetic reflex response to underlying arterial pressure oscillations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call