Abstract

To investigate the diving heart rate (f(H)) response of the emperor penguin (Aptenodytes forsteri), the consummate avian diver, birds diving at an isolated dive hole in McMurdo Sound, Antarctica were outfitted with digital electrocardiogram recorders, two-axis accelerometers and time depth recorders (TDRs). In contrast to any other freely diving bird, a true bradycardia (f(H) significantly <f(H) at rest) occurred during diving [dive f(H) (total beats/duration)=57+/-2 beats min(-1), f(H) at rest=73+/-2 beats min(-1) (mean +/- s.e.m.)]. For dives less than the aerobic dive limit (ADL; duration beyond which [blood lactate] increases above resting levels), dive f(H)=85+/-3 beats min(-1), whereas f(H) in dives greater than the ADL was significantly lower (41+/-1 beats min(-1)). In dives greater than the ADL, f(H) reached extremely low values: f(H) during the last 5 mins of an 18 min dive was 6 beats min(-1). Dive f(H) and minimum instantaneous f(H) during dives declined significantly with increasing dive duration. Dive f(H) was independent of swim stroke frequency. This suggests that progressive bradycardia and peripheral vasoconstriction (including isolation of muscle) are primary determinants of blood oxygen depletion in diving emperor penguins. Maximum instantaneous surface interval f(H) in this study is the highest ever recorded for emperor penguins (256 beats min(-1)), equivalent to f(H) at V(O(2)) max., presumably facilitating oxygen loading and post-dive metabolism. The classic Scholander-Irving dive response in these emperor penguins contrasts with the absence of true bradycardia in diving ducks, cormorants, and other penguin species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call