Abstract
Abstract Videos of the human skin contain subtle color variations associated with the blood volume pulse. This remote photoplethysmography signal can be used for heart rate monitoring and represents an alternative to signals obtained from contact-based hardware. We developed an algorithm that estimates the heart rate in real-time from photoplethysmography signals and evaluate its performance in the context of ultra-high-field magnetic resonance imaging. We compare its accuracy to heart rate values estimated from electrocardiography and finger pulse oximetry triggers, obtained from MR vendor-provided hardware. For eight subjects, two experiments are conducted with the patient table outside and inside a 7 Tesla scanner. During both 5 min setups, heart rates from the algorithm and contact-based methods are stored. Their comparison suggests technical feasibility of the contactless method but that it is inferior in accuracy compared to contact-based hardware and that low heart rates (≤50 beats per minute) and adequate illumination are major challenges for practical feasibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.