Abstract

In this paper we consider the problem of low power SpO2 sensors for acquiring Photoplethysmograph (PPG) signals. Most of the power in SpO2 sensors goes to lighting red and infra-red LEDs. We use compressive sensing to lower the amount of time LEDs are lit, thereby reducing the signal acquisition power. We observe power savings by a factor that is comparable to the sampling rate. At the receiver, we reconstruct the signal with sufficient integrity for a given task. Here we consider the tasks of heart rate (HR) and blood pressure (BP) estimation. For BP estimation we use ECG signals along with the reconstructed PPG waveform. We show that the reconstruction quality can be improved at the cost of increasing compressed sensing bandwidth and receiver complexity for a given task. We present HR and BP estimation results using the MIMIC database.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call