Abstract
Background Myocardial perfusion cardiovascular magnetic resonance (CMR) with vasodilator stress has high diagnostic accuracy for detecting coronary artery disease (CAD). Current CMR perfusion pulse sequences use largely fixed acquisition parameters designed to acquire at least three slices every heart beat, optimized for the heart rates that typically occur during pharmacological stress. In patients with lower heart rates there can be a significant amount of unused potential imaging time [Figure 1]. In those with higher heart rates, acquisition with fixed parameters may not be possible at every heart beat. A more flexible acquisition scheme could optimize acquisition parameters specifically for each patient and heart rate with potential improvements in image quality or temporal resolution. We aimed to assess the feasibility of a perfusion pulse sequence which adapts to the heart rate, maximizing imaging time and acquired spatial resolution.
Highlights
Myocardial perfusion cardiovascular magnetic resonance (CMR) with vasodilator stress has high diagnostic accuracy for detecting coronary artery disease (CAD)
Current CMR perfusion pulse sequences use largely fixed acquisition parameters designed to acquire at least three slices every heart beat, optimized for the heart rates that typically occur during pharmacological stress
We aimed to assess the feasibility of a perfusion pulse sequence which adapts to the heart rate, maximizing imaging time and acquired spatial resolution
Summary
Myocardial perfusion cardiovascular magnetic resonance (CMR) with vasodilator stress has high diagnostic accuracy for detecting coronary artery disease (CAD). Current CMR perfusion pulse sequences use largely fixed acquisition parameters designed to acquire at least three slices every heart beat, optimized for the heart rates that typically occur during pharmacological stress. In patients with lower heart rates there can be a significant amount of unused potential imaging time [Figure 1]. In those with higher heart rates, acquisition with fixed parameters may not be possible at every heart beat. A more flexible acquisition scheme could optimize acquisition parameters for each patient and heart rate with potential improvements in image quality or temporal resolution. We aimed to assess the feasibility of a perfusion pulse sequence which adapts to the heart rate, maximizing imaging time and acquired spatial resolution
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.