Abstract

An adenine analog 8-[m-(m-fluorosulfonylbenzamido)benzylthio]adenine (FSB-adenine) reacts covalently with sheep heart phosphofructokinase. Under conditions optimal for allosteric kinetics the modified enzyme is less sensitive to inhibition by ATP and insensitive to activation by AMP, cyclic AMP, and ADP. The concentration of fructose-6-P necessary for half-maximal activity is markedly decreased, while the cooperativity to the same substrate is not changed under the same conditions. The modified enzyme is more stable at pH 6.5 when compared with the native enzyme. Changes in the allosteric kinetics of the enzyme are proportional to the extent of modification reaching maximal effect when 3.2 mol of the reagent were bound/mol of tetrameric enzyme. Affinity labeling of the enzyme by the adenine derivative does not affect significantly the catalytic site. This is evidenced by the demonstration that under assay conditions optimal for Michaelian kinetics neither the Km for ATP nor for fructose-6-P is significantly changed following chemical modification. Maximal activity of the modified enzyme was 60% of the native enzyme. ADP gives the best protection, while AMP gives less protection against modification by the reagent. ATP slows the rate of the reaction and causes a slight decrease in maximum binding of the reagent to the enzyme. Modification of the enzyme caused a marked reduction of AMP and ADP binding. The evidence indicates that the modified site is a nucleotide mono- and diphosphate activation site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.