Abstract

AbstractMicromixers are the microfluidic devices able to rapidly mix more than two liquids, with low pressure drop and high mixing efficiency (εmixing). In this study, the effect of Reynolds number ratio (Rer) and aspect ratio (AR) of heart-like biometric micromixer applied would be investigated by a numerical simulation and experimental confirmation. Results show that the heart-like biometric micromixer resulting from the coupling effect of the split and recombination (SAR) and biometric design can produce a high mixing efficiency, low pressure drop and short mixing path under a case of low Reynolds number. Two dimensional results also find that a flow mixing efficiency of εmixing=0.89 and an optimal mixing index of Midx=115 could be achieved at a flow condition of Rer=0.75 and Re2=0.1 of the middle-inlet channel I2. In additional, the three dimensional results indicate that a high flow mixing efficiency of εmixing=0.84 and the lowest pressure drop of 164.2 Pa was obtained at the flow conditions of Rer=0.9 and AR=10 when the middle-inlet channel I2was Re2=0.1. These findings will be useful to improvement the efficiency for micromixcers of biometric design in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call